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The results of experimental and theoretical studies into the influence of

ultrasound on the propagation of neutron waves in a thick Ge crystal are

presented. The neutron intensity profiles were measured for the case of Laue

diffraction inside the Borrmann fan. At low amplitudes of ultrasonic waves

interference effects (diffraction intensity beatings) were observed. The

observations were possible because of the uniform acoustic-field distribution

through the whole bulk of the crystal. As distinct from the classical Shull

experiments, wide analysing slits or position-sensitive detectors were used. To

explain the results obtained, a modified theory for the spatial distribution of

neutron diffraction intensities in the presence of acoustic excitation of the

crystal is proposed. A good agreement between experiment and theory is

obtained. At high amplitudes of ultrasonic waves the transition to kinematic

scattering was not observed, despite the large strains in the crystalline lattice

created by ultrasound. This could be connected with the formation of a

superlattice having a standing wave period. A strong rise in the diffraction

intensity and a sharp constriction of the neutron beam at the centre of the

Borrmann fan were observed. This new effect could be used for the creation of

ultrasound-controlled monochromators.

1. Introduction

Experiments confirming the correctness of theoretical

considerations based on the dynamical theory of wave radia-

tion fields in the interior of a perfect crystal were performed

by Kato (Kato & Lang, 1959; Kato & Ando, 1966; Kato, 1969)

for X-ray and later by Shull (Shull, 1968, 1973; Zeilinger et al.,

1983) for neutron diffraction in silicon and germanium single

crystals. The theoretical description of dynamical diffraction

considers the neutron wave pattern propagating in the peri-

odic potential of an ideal lattice. This theory explains a variety

of diffraction features such as, for example, intensity Pendel-

lösung oscillations, intensity variations within a Borrmann fan,

anomalous transmission of X-rays and neutrons etc. One of the

most important effects of dynamical diffraction is the strongly

limited intensity diffracted by an ideal crystal in the Bragg

position. In the case of Laue diffraction, the distribution of the

diffracted intensities has an oscillating form within a Borr-

mann fan (Rauch & Petrashek, 1979; Abov et al., 2002).

However, the interference effects disappear very quickly if

the translation symmetry in a perfect crystal is violated due to

any disturbance, such as static deformation strain or low-

frequency sound excitations (Entin, 1979). In this case, the

Bragg-reflected intensity increases, and neutron diffraction is

described as a rule by the kinematical theory of radiation

scattering.

The purpose of this paper is to present experimental and

theoretical results of the study of acoustic wave (AW)

distortions or dynamic strain effects in the propagation of

neutron waves. The neutron intensity profiles for the case of

Laue diffraction in the interior of the Borrmann fan, i.e. the

pattern of neutron distribution at the exit of the crystal for a

thick Ge crystal, were measured. Our experiments presented

here, on the neutron Bragg scattering in a Ge single crystal

excited by a high-frequency transverse standing AW, are a

version of Shull’s experiments. However, our experiments

were carried out with monochromatic neutrons and a perfect

crystal disturbed by ultrasound, instead of Shull’s ‘imperfect’

neutrons (a white beam with high collimation) and perfect

crystals. Another distinction from Shull’s classical experiments

is the use of position-sensitive detectors (PSDs) instead of

very narrow analysing slits [0.13 mm (Shull, 1973) or 0.1 mm

(Abov et al., 2002)].

Ultrasonic waves are a simple and well defined disturbance

of the crystal lattice, and allow one to study the transition in

diffraction from a perfect crystal reflecting a weak intensity

towards an imperfect crystal diffracting an enlarged neutron

wavelength band. The degree of crystal imperfection is easily

controlled by the sound-wave amplitude (Kulda et al., 1988;

Michalec et al., 1988; Hock et al., 1998).

In the case of neutron wave propagation in a temporally

and spatially modulated crystal the interference of Bloch
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waves depends on the ultrasound wave amplitude, while

neutron diffraction is well described by the dynamical theory

of scattering, even at very strong and periodical distortion of

the crystalline lattice.

Recently, the intensities of neutron Bragg diffraction from

the front and back faces of a thick, perfect Ge single crystal

undergoing ultrasound excitation have been measured and

calculated theoretically (Raitman et al., 2010). It was shown

that, simultaneously with the AW amplitude increasing, the

main Bragg peaks grow and the back-face peaks become

asymmetric and tend to disappear. Such back-face scattering

was observed for the first time. This effect is successfully

described within the frameworks of the dynamical theory of

neutron scattering modified in the presence of ultrasound

excitation and Kato’s quasi-classical approximation taking

into account the new ultrasonic extinction length.

The main aim of our work was the search for spatial oscil-

lations of the diffracted neutron intensity for the case of weak

ultrasound excitations and their analytical treatment. This

effect was predicted theoretically (Iolin & Entin, 1983). Also,

it has been shown that high-frequency ultrasound mixes the

states corresponding to the various sheets of the dispersion

surface (Iolin et al., 1986). This mixing leads to a number of

new effects, e.g. the resonant suppression of the Borrmann

effect (Entin, 1979) and radiation intensity Pendellösung

dependent on the acoustic wave amplitude (Entin & Puch-

kova, 1984; Iolin et al., 1986).

Below, a spatial Pendellösung of the neutron intensities

observed for the first time near the centre of the Borrmann fan

on a thick Ge single crystal is described and analysed. For a

description of the experimental data obtained, the modified

theory of the spatial distribution of diffracted neutrons in the

presence of a crystal ultrasonic excitation is offered. A good

agreement between experiment and theory is obtained.

In addition, it is shown that strong ultrasound leads to the

appearance of an intense, narrow neutron beam at the centre

of the Borrmann fan. This effect could be used for the creation

of ultrasound-controlled monochromators.

2. Experimental

2.1. Experimental layout

The experiments were carried out using an HZB BENSC

E6 diffractometer (�n = 0.243 nm), a V12a double-crystal

diffractometer (�n = 0.471 nm) and a PSI MORPHEUS

diffractometer (�n = 0.410 nm). The experimental layout is

shown in Fig. 1. The sample was a Ge single crystal [(111)

reflection] with dimensions V = 52 � 22 � 20 mm = Y � L�

T mm, where Y is the sample length, T is the sample thickness

and L is the distance on which the standing AW propagation

was taken. A monochromatic and well collimated neutron

beam with a cross section of 1 � 10 mm was directed to the

sample. The sample quality was checked preliminarily and the

FWHM of the rocking curve was 3.100, close to the theoretical

expectation. For the observation of the diffracted neutron

distribution two techniques were used. One of them used an

analysing slit B (Fig. 1), similar to the classic experiments but

with a width of 0.5 mm – different to the 0.1 mm slits used by

Shull (1973) and Abov et al. (2002) for intensity oscillation

observations – to avoid ‘non-sound’ intensity oscillations

(Shull fringes). In the other method an analysing slit was not

used. Instead, the spatial distribution of the reflected neutron

beam was measured with a PSD. After finding the optimal

relation �–2� (adjustment), the sample and PSD were kept

motionless and the reflected intensity distribution was directly

measured in 2�; the coordinates were then recalculated for the

current x coordinates (E6 and V12a diffractometers). This

procedure in general is similar to the scanning with slit

method; however, it allows much faster data acquisition.

2.2. Acoustic field in the sample

The transverse AW excitation was realized using a quartz

piezo transducer with main frequency �s = 41.3 MHz. The

polarized AW propagated perpendicular to the scattering

vector H (ks ? H, u k H), where u is the displacement of a

nucleus for standing transverse waves excited between the two

parallel surfaces of the sample with waves amplitude w. The

piezo transducer was glued to the sample using salol. As

shown below, the diffraction intensity is proportional to |Hw|;

therefore its values could be used for estimation of the

acoustic field inside the crystal (Fig. 2). Owing to the diffrac-

tive divergence of acoustic waves (Truell et al., 1972), this field

is concentrated not only in the region around the piezo

transducer but is distributed uniformly enough through the

whole sample, especially at the levels of weak and moderate

excitation. It was more important to check the uniformity of a

sound field in the Borrmann fan. In these experiments the slit
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Figure 1
The layout of the experiment: A and B are the forming and analysing slits,
respectively; PSD is the position-sensitive detector; PT is the piezo
transducer; H is the vector of the reciprocal lattice; ks is the AW
wavenumber; y is the direction of the sample movement (slit B is
motionless); x is the current coordinate in the base of the Borrmann fan
and the direction of movement of slit B. In this case, the sample is
motionless.



B remained motionless and the sample was moved in the

direction y with a step of 2 mm.

The uniformity of the acoustic-field distribution within a

Borrmann fan is an important prerequisite to ensure obser-

vation of the spatial oscillations of diffraction intensity.

Assume that in the diffraction process a finite volume of the

sample participates, in which the amplitude w of AW oscilla-

tions is distributed in the interval w � �w. From the theore-

tical expression �ks = �K0|Hw| (Iolin & Entin, 1983; Iolin et

al., 1986), it follows that a spread in wave amplitude w is

connected to a spread in wavevector ks. This leads to a

smearing of the pulse gap (ks � �ks); therefore the phase

difference of the corresponding Bloch waves on the crystal

surface will be �’ = �ksT = �K0HT (w��w). Since the

intensity oscillations are approximately described by the

function I ’ cos2(�ksT), the nth intensity maximum corre-

sponds to the condition �’ = �k0HwT = n� where n is an

oscillation number. At a phase shift of �’1 ¼ �=2 the

maximum of diffracted intensity Is becomes its minimum.

Therefore, to observe oscillations it is necessary that the phase

shift �’1 is less than �=2. From this follows the estimation

�w/w < 1/(2n). At a reasonable distribution of w values

(�w/w ’ 10%) this leads to the situation where in the

experiment only the first few oscillations can be observed.

From the data shown in Fig. 2 (curve 2) it is seen that the

conditions �w/w � 10% are fulfilled well at low amplitudes of

the AW.

2.3. Velocities of the acoustic standing waves

As a rule, theoretical estimations of the AW effect on the

diffraction intensity were made for the case of coherent sound.

As follows from Fig. 3(a), in our experiment there is a wide

enough frequency spectrum of excitations described by a

Gaussian and the AW cannot be considered as a single mode.

However, as was previously shown (Iolin et al., 1996), the

assumption of sound coherence is not always necessary for

the correct interpretation of the experimental results. When

the diffraction intensity depends on the frequency under

scanning with a smaller step (Fig. 3b), a fine structure appears

which is evidence of the presence of an acoustic standing wave

in the crystal. For acoustic standing waves the relation

L ¼ i�s=2 should be fulfilled, where i is an integer of half-

waves, �s is the AW wavelength and L = 22 mm is the distance

of AW propagation. If we know L and the distance between

the maxima (minima) of the fine structure of the frequency

dependence ��s ¼ ½�si � �sði�1Þ� (Fig. 3b), it is possible to

determine the velocity of sound propagation. Determining

��s ¼ ð0:08� 0:01ÞMHz from the data in Fig. 3(b), we obtain

i = �si/�� = 517–524 (with an accuracy of �10%) and vs =

(3.52 � 0.20) � 105 cm s�1. This value is very close to the

reference value of 3.55 � 105 cm s�1 (McSkimin, 1950) for the

velocity of a shear AW for a Ge single crystal in the [100]

direction.

3. Main results and discussion

3.1. Theoretical background

The effect of an AW on neutron diffraction in a perfect

crystal is shown schematically in Fig. 4. The new energy gaps ks
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Figure 3
Dependence of the Laue diffraction intensity Is at the Borrmann fan
centre on the ultrasound frequency (�n = 0.410 nm, S = 1 mm): (a) the
frequency scanning step is 0.5 MHz; the solid curve is a result of data
fitting by a Gaussian with an FWHM of 6.34 MHz; the region in which the
detailed frequency scanning was carried out is shaded (41.2–41.8 MHz);
(b) the same as in (a) only for the shaded frequency range, shown in (a).
The frequency scanning step is �0.01 MHz; the solid curve was obtained
by averaging over three data points (spline approximation).

Figure 4
Schematic image of the dispersion surface modified by ultrasound (Laue
geometry) in a perfect crystal. �K0 is the gap between the sheets of the
dispersion surface determining the extinction length (� ¼ 2�=�K0); and
ks are the new AW energy gaps determining the additional regions of
Bragg reflection (Iolin & Entin, 1983; Iolin et al., 1986).

Figure 2
Diffraction intensity distribution in relative units at different sample
displacements along the y axis: (1) in the absence of ultrasonic excitation;
(2) VG = 0.3 V; (3) VG = 5 V. PT is the piezo transducer. The Is value is
proportional to the AW amplitude.



appear on dispersion surfaces which correspond to the addi-

tional regions of total reflection for the case of Bragg reflec-

tion. The AW phonon’s absorption (emission) by neutrons

mixes Bloch states and displaces the dispersion surface of the

neutron by the value of the quasi-momentum �q:

�q ¼ �s=ðvn cos �BÞ � ks: ð1Þ

The neutron-acoustic resonance frequency �res is determined

by equation (2) (Iolin & Entin, 1983; Raitman et al., 2009):

�res ¼ ðvn cos �BÞ=�; ð2Þ

where �B and vn are the Bragg angle and the neutron velocity,

respectively, and � is the extinction length. Equation (1) is

valid if H?ks and this corresponds to our experimental

conditions (Fig. 1). The resonance frequency �res is equal to

19.6 MHz for Ge(111) and, taking into account the Debye–

Waller factor, its value does not depend on the observed

reflection (Iolin et al., 1996; Raitman et al., 2009). For the case

vs > vres a linear increase in the diffraction intensity should be

observed depending on the AW amplitude w (Iolin et al.,

1986).

The change in the diffracted neutron intensity distribution

for the crystal by the AW can be interpreted qualitatively and

quantitatively by the dynamical diffraction theory. Calcula-

tions taking into consideration the strains created by the AW

which affect the neutron wavefield inside the crystal can be

made using modified Takagi–Taupin equations (Takagi, 1962;

Taupin, 1961; Iolin et al., 1988):

i�
@�0

@t
¼ �i

@�0

@z
� i tan �B

@�0

@x
þ

�k0

2
expðiHuÞ�h ð3Þ

i�
@�h

@t
¼ �i

@�h

@z
þ i tan �B

@�h

@x
þ

�k0

2
expð�iHuÞ�0; ð4Þ

where � ¼ 1=vn cos �B and u ¼ w sinð!tÞ sinðkszÞ is the

displacement of a nucleus for standing transverse waves

excited between the two parallel surfaces of the sample with

wave amplitude w, wavelength �s and wavenumber ks ¼

2�=�s. �0;�h are the amplitudes of the incident and diffracted

beams, respectively, vn is the velocity of the neutron wave and

�k0 ¼ 2�=� with � being the extinction length. Solving the set

of equations (3) and (4) we can determine the diffraction

intensity at the centre of the Borrmann fan for the plane

monochromatic neutron wave approximation depending on w,

ks, �n and �. However, such a determination is not precise

enough for calculation of the spatial distribution of the

diffraction intensity – even near the centre of the Borrmann

fan, when the whole dispersive surface is excited.

3.2. Spatial intensity distribution of the diffracted neutron
beam

Owing to the interference of Bloch waves, the distribution

of diffracted neutron beam intensity in a crystal arising on its

outside surface has characteristic beats at the centre and the

intensity increases towards the edges of the Borrmann fan.

These effects are described by equation (5) (Kato, 1969; Abov

et al., 2002):

I0 �ð Þ ¼ cð1� �2Þ
�1=2 cos2½Að1� �2Þ

�1=2
�; ð5Þ

where � ¼ x=ð2T tan �BÞ is the deviation of a neutron wave

from the atomic plane trace, A ¼ �T=�, c is a normalization

constant and x is the current coordinate in the base of the

Borrmann fan. Equation (5) is valid for the diffraction of a

plane monochromatic wave in the symmetrical Laue case. A

more rigorous expression for the shape of the reflected beam

distribution can be obtained with the help of a spherical

neutron wave approximation (Kato, 1969):

I0ð�Þ ¼ ðA=2Þ J2
0 ½Að1� �2

Þ
1=2
�; ð6Þ

where J0 is the Bessel function of zero order. According to

equations (5) and (6), the intensity of a diffracted beam

oscillates on the outside surface of a crystal, with the oscilla-

tion period depending on the parameter �T=�, and decreases

quickly outward from the centre of profile (� ¼ 0) (Figs. 5

and 6).

The diffraction intensity distribution shown in Fig. 6 (curve

2) was obtained using an analysing slit B with width S = 1 mm.

Curves 1 and 3 were observed with no slit at all, employing

instead a high-resolution PSD. In both cases the oscillations

are averaged, and the dependence of the full size of the
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Figure 5
Normalized intensity distribution for an Si single crystal [reflection (111)],
B-slit width S � 0.2 mm, T = 11 mm. Neutron wavelength �n = 0.1 nm.
The so-called Shull’s fringe is clearly seen at the centre of the profile
(Kuvaldin, 1991).

Figure 6
Normalized intensity distribution for reflection (111) of Ge (T = 20 mm)
(Borrmann fan) for different neutron wavelengths: (1) �n = 0.471 nm; (2)
�n = 0.410 nm; (3) �n = 0.243 nm. Curve 2 was obtained using a slit with S
= 1 mm. Curves 1 and 3 were obtained without an analysing slit (PSD
only).



Borrmann fan base X on the neutron wavelength follows from

the averaged equation (5) (Table 1):

X ¼
2T�n

ð4d2 � �2
nÞ

1=2
: ð7Þ

3.3. High-frequency sound effect on the spatial distribution
of the diffracted neutron intensity

The presence of new energy gaps ks (Fig. 4) on the disper-

sion surface under ultrasound should lead to the appearance

of an additional structure in the intensity distribution of

diffracted neutrons at the exit of a crystal. The new distribu-

tion, as shown below, depends on the AW amplitude, w, while

‘sound’ oscillations are superimposed on the initial ones. The

size of the first soundless oscillation for the Ge (111) reflection

in the vicinity of � ¼ 0 according to equation (5) is �x1 ¼

ðT�Þ1=2 tan �B ’ 1:5 mm. The numerical analysis of experi-

mental data based on the known theoretical expressions

involves difficulties, since they have been obtained in the plane

neutron wave approximation. Such an approximation cannot

be applied to the description of the intensity distribution of

diffracted neutrons on the Borrmann fan base when the whole

dispersion surface is excited.

We have derived expressions for the diffraction intensity of

a spherical neutron wave in an ideal crystal under ultrasound

excitation. In this case the total diffraction intensity It is

composed of the elastic and inelastic components:

It ¼ Iel þ Iin

Iel ¼ I0 þ�Iel; ð8Þ

where Iin and �Iel are the elastic and inelastic additions,

respectively; I0 is determined from equation (6), while the

elastic addition to the diffraction intensity is given by equation

(9):

�Iel ¼
2�K2

0 Hwð Þ
2 sin2 �qT=2ð Þ J2

1 AHw 1��ð Þ
1=2

� �
�q2 ��K2

0

� �
1��ð Þ

; ð9Þ

where J1 is the Bessel function of the first order and �q is the

displacement of the dispersive surface at the absorption or

emission of an ultrasound phonon. The main contribution to

the intensity of inelastic (one-phonon) scattering is made by

the term

Iin ¼ Hwð Þ
2 1þ

�q2

�q2 ��K2
0

� �
" #

J2
0

� AHw 1��ð Þ
1=2

� �
; ð10Þ

where

� ¼
�2�q2

�q2 ��K2
0

� � ; A ¼ �T=�:

ð11Þ

Equations (9) and (10) describe the

central part of a Borrmann fan:

� 1��K2
0=�q

2
� �1=2

� � � 1��K2
0=�q

2
� �1=2

; ð12Þ

these are valid at �K0Hw ¼ ð�q��K0Þ, which corresponds

to the weak interaction of satellites with the main Bragg

maximum. At �s 	 �res, (�q	 �K0), i.e. under the conditions

of our experiment, Iin far exceeds �Iel. This was previously

confirmed by our experiments with measuring the spin-echo in

a silicon single crystal under ultrasound pumping (Iolin et al.,

1998).

The spatial distribution of diffraction intensity is described

by the expression

Isð�;HwÞ ¼ I0 þ Iin; ð13Þ

where Iin is taken in the form of equation (10) and I0 of

equation (6). The character of the spatial distribution of the

diffraction intensity is dictated by three parameters: A, Hw

and the �q=�K0 ratio. The choice of a thick (T ’ 70�) Ge

crystal is not quite optimal, since the first AW oscillations will

appear when the ‘acoustic’ extinction length is �s ¼ � Hwj j
�1,

i.e. the degree of crystal perfection should be very high. On the

other hand, a thick crystal provides a long enough Borrmann

fan, which allows for easy and detailed measurements of the

spatial distribution of the diffracted beam intensity (Fig. 7).

Already at a small amplitude of the acoustic wave Hw = 0.26

(w = 0.013 nm), the diffraction intensity in the centre starts

rising noticeably. The width of the first oscillation (Fig. 7) on

the x axis (close to � ¼ 0) at Hw = 0 could be estimated from

equation (5): �x1 ¼ ð2T�Þ1=2 tan �B and �x1 ’ 6 mm for the

Ge (111) reflection. Since at the appearance in the vicinity of

� ¼ 0 of a new ‘sound’ extinction length �s ¼ � Hwj j
�1, at

Hw
 1 the linear size of the first ‘sound’ fringe will increase

as �xs ¼ �x1 Hwj j
�1=2. As follows from Fig. 7, at Hw = 0.26 the

size of the first acoustic fringes is 11.4 mm, which coincides

well with the calculated value of 12 mm. Besides, at least the

next two oscillations could be clearly discerned. As Hw further

increases, at the profile centre a linear intensity rise is

observed. To compare the theoretical and experimental data a

high-precision determination of the A and Hw parameters is

needed, since the Bessel function oscillates quickly at large

values of the argument. The calculated A value is 2071, i.e.

close to A = 2060, at which ‘soundless’ distribution of the

diffraction intensity (Hw = 0) is described most satisfactorily

by equation (6), taking into account integration over the width

of the analysing slits and correct data averaging. The AW
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Table 1
Comparison of calculated and experimental data for the spatial distribution of intensities for different �n.

S is the slit width. T is the sample thickness. Experimental results for Si(111) are taken from Kuvaldin (1991;
Fig. 5). The Xtheor values calculated by equation (7) coincide well with the experimental ones.

T (mm)
�n

(nm)
S
(mm)

Xtheor

(mm)
Xexp

(mm) Ið� ¼ 1Þ=Ið� ¼ 0Þ Ið� ¼ �1Þ=Ið� ¼ 0Þ

Si(111), 11 mm 0.101 0.2 7.04 7.2 1.64 1.61

Ge(111), 20 mm 0.243 PSD 15.22 15.0 1.46 1.40
0.410 1.0 30.61 31.5 3.00 2.80
0.471 PSD 39.34 40.2 3.50 3.22



amplitude can be determined by changes in relative intensity

variations at the centre of the spatial profile (� ¼ 0):

	 ¼
Is � I0

I0

¼
Iin

I0

¼
Hwð Þ

2 1þ �q2= �q2 ��K2
0ð Þ

� �
J2

0 HwAð Þ

J2
0 Að Þ

:

ð14Þ

At large values of the argument J0ðzÞ !

ð2=�zÞ
1=2 cosðz� �=4Þ, the relative contribution of the

neutron inelastic scattering by AW oscillations of the lattice

with a frequency above resonant is

	ðHwÞ ¼ 4Hw
cos2 HwAð Þ

cos2 Að Þ
’ 4Hw: ð15Þ

The experimental data shown in Fig. 8 were obtained for the

same sample but on different neutron diffractometers using

different RF generators and wide-band amplifiers. Besides,

every time the piezo transducer was reglued anew. However,

in all cases a linear dependence of 	 on the generator voltage

VG was observed, which makes it possible to find a calibration

constant C and to determine the AW amplitude from the

relationship

	 ¼ CVG ¼ jHwj: ð16Þ

The effect of saturation was observed in the 	 dependence

versus VG for large Hw. The heating of the organic glue leads

to a decrease in its viscosity and brings about violation of the

proportionality between VG and w. This fact was taken into

account and the measurements were considered reliable up to

Hw � 3.5.

Fig. 9 shows the spatial distribution of diffraction intensity Is

depending on the acoustic wave amplitude for neutrons of

different wavelength. Independently of the neutron wave-

length, Is at the Borrmann fan centre increases with increasing

Hw.

Fig. 10 demonstrates a sharp decrease in the spatial half-

width of the central peaks which is dependent on the AW

amplitude. This result is unexpected, since in some earlier

works where the possibility of creating ultrasound-driven/

controlled monochromators was discussed (Guigay et al., 1990;

Mikula et al., 1992; Hock et al., 1993) the gain in intensity with

rising AW amplitude is always compensated by a loss in

resolution (the FWHM rises). In contrast, in our experiments
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Figure 7
Spatial distribution of a diffracted beam intensity versus the AW amplitude w and � value. Dashed curves represent averaged experimental data, solid
curves are a result of data fitting by equations (10)–(12).

Figure 8
Diffraction intensity at the centre of a Borrmann fan (� ¼ 0) versus AW
amplitude for neutrons of different wavelength: (1) �n = 0.41 nm; (2) �n =
0.471 nm; (3) �n = 0.243 nm. Solid curves: fitting taking into account
equations (13)–(15).



the FWHM decreases by a factor of three to four times as the

Hw increased by a factor of two. This effect is described well

by the expression

FWHM ¼ 
ðHwÞ
�1; ð17Þ

where 
 is a parameter depending on the neutron wavelength.

To study this effect in more detail, additional investigations

are needed, for example, measuring the FWHM of double-

crystal rocking curves as a function of Hw at the centre of the

Borrmann fan.

4. Conclusions

For describing the diffraction in single perfect crystals the

theory of dynamical neutron scattering has been employed.

This approach considers the neutron wave pattern propa-

gating in the periodic potential of an ideal lattice, and a variety

of features are explained by this theory, including an oscil-

lating form for the distribution of the diffracted intensities

within the Borrmann fan in the case of Laue diffraction. One

of the most important dynamical diffraction effects is the

strongly limited intensity diffracted by an ideal crystal in the

Bragg position. However, the interference effects disappear

very quickly if the translation symmetry in a perfect crystal is

violated due to any disturbance (static deformation strain,

low-frequency sound excitations etc.) and the Bragg-reflected

intensity increases. In our work it is shown that even a very

sharply rising diffraction intensity at the centre of the Borr-

mann fan (Is/I0� 10) can be described quantitatively using the

dynamical diffraction model for the neutron propagating in a

thick crystal as a spherical wave.

The ultrasonic lattice vibrations create a ‘sound’ strain

(deformation), �s ¼ ksw. For jHwj ’ 5 and an AW frequency

�s = 41.3 MHz the relative lattice deformation �s can reach the

rather high level of �2 � 10�5. Nevertheless, no transition to

kinematic scattering occurs, which could be explained by the

creation of a new periodical potential (superlattice) in the

ideal crystal by a standing wave, which determines not only

spatial interference effects at small Hw values but the features

of diffraction at large Hw too.
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Figure 9
The neutron diffraction intensity as a function of acoustic wave amplitudes Hw and running coordinate x in the base of the Borrmann fan for neutrons of
different wavelength: (a) �n = 0.410 nm; (b) �n = 0.243 nm; (c) �n = 0.471 nm.

Figure 10
FWHM of the central peaks versus AW amplitude for neutrons of
different wavelengths: (1) �n = 0.410 nm, (2) �n = 0.243 nm.
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